viernes, 27 de marzo de 2009

FUNCIONAMIENTO DEL CD-ROM

CD-ROM

Un CD-ROM "Disco Compacto - Memoria de Sólo Lectura"), es un disco compacto utilizado para almacenar información no volátil, el mismo medio utilizado por los CD de audio, puede ser leído por un computador con lectora de CD. Un CD-ROM es un disco de plástico plano con información digital codificada en una espiral desde el centro hasta el borde exterior.
Capacidad
Un CD-ROM estándar puede albergar 650 o 700 (a veces 800) MB de datos. El CD-ROM es popular para la distribución de software, especialmente aplicaciones multimedia, y grandes bases de datos. Un CD pesa menos de 30 gramos.
Para poner la memoria del CD-ROM en contexto, una novela promedio contiene 60,000 palabras. Si se asume que una palabra promedio tiene 10 letras —de hecho es considerablemente menos de 10 de letras— y cada letra ocupa un byte, una novela por lo tanto ocuparía 600,000 bytes (600 kb). Un CD puede por lo tanto contener más de 1000 novelas. Si cada novela ocupa por lo menos un centímetro en un estante, entonces un CD puede contener el equivalente de más de 10 metros en el estante. Sin embargo, los datos textuales pueden ser comprimidos diez veces más, usando algoritmos compresores, por lo tanto un CD-ROM puede almacenar el equivalente a más de 100 metros de estante










Componentes de la unidad lectora de CD










El lector de discos compactos está compuesto de:


Unidad Lectora de CD para computadora personal.





Un cabezal, en el que hay un emisor de rayos láser, que dispara un haz de luz hacia la superficie del disco, y que tiene también un fotoreceptor (foto-diodo) que recibe el haz de luz que rebota en la superficie del disco. El láser suele ser un diodo AlGaAs con una longitud de onda en el aire de 780 nm. (Cercano a los infrarrojos, nuestro rango de visión llega hasta aproximadamente 720 nm.) por lo que resulta una luz invisible al ojo humano, pero no por ello inocua. Ha de evitarse siempre dirigir la vista hacia un haz láser. La longitud de onda dentro del policarbonato es de un factor n=1.55 más pequeño que en el aire, es decir 500 nm.





Un motor que hace girar el disco compacto, y otro que mueve el cabezal radialmente. Con estos dos mecanismos se tiene acceso a todo el disco. El motor se encarga del CLV (Constant Linear Velocity), que es el sistema que ajusta la velocidad del motor de manera que su velocidad lineal sea siempre constante. Así, cuando el cabezal de lectura está cerca del borde el motor gira más despacio que cuando está cerca del centro. Este hecho dificulta mucho la construcción del lector pero asegura que la tasa de entrada de datos al sistema sea constante.




La velocidad de rotación en este caso es controlada por un microcontrolador que actúa según la posición del cabezal de lectura para permitir un acceso aleatorio a los datos. Los CD-ROM, además permiten mantener la velocidad angular constante, el CAV (Constant Angular Velocity). Esto es importante tenerlo en cuenta cuando se habla de velocidades de lectura de los CD-ROM.
Un DAC, en el caso de los CD-Audio, y en casi todos los CD-ROM. DAC es Digital to Analogical Converter. Es decir un convertidor de señal digital a señal analógica, la cual es enviada a los altavoces. DAC’s también hay en las tarjetas de sonido, las cuales, en su gran mayoría, tienen también un ADC, que hace el proceso inverso, de analógico a digital.


Otros servosistemas, como el que se encarga de guiar el láser a través de la espiral, el que asegura la distancia precisa entre el disco y el cabezal, para que el laser llegue perfectamente al disco, o el que corrige los errores, etcétera.
Pasos que sigue el cabezal para la lectura de un CD:
Un haz de luz coherente (láser) es emitido por un diodo de infrarrojos hacia un espejo que forma parte del cabezal de lectura, el cual se mueve linealmente a lo largo de la superficie del disco.
La luz reflejada en el espejo atraviesa una lente y es enfocada sobre un punto de la superficie del CD





Esta luz incidente se refleja en la capa de aluminio, atravesando el recubrimiento de policarbonato. La altura de los salientes (pits) es igual en todos y está seleccionada con mucho cuidado, para que sea justo ¼ de la longitud de onda del láser en el policarbonato. La idea aquí es que la luz que llega al llano (land) viaje 1/4 + 1/4 = 1/2 de la longitud de onda (en la figura se ve que la onda que va a la zona sin saliente hace medio período, rebota y hace otro medio período, lo que devuelve una onda desfasada medio período ½ cuando va a la altura del saliente), mientras que cuando la luz rebota en un saliente, la señal rebota con la misma fase y período pero en dirección contraria. Esto hace que se cumpla una propiedad de la óptico-física que dice una señal que tiene cierta frecuencia puede ser anulada por otra señal con la misma frecuencia, y misma fase pero en sentido contrario por eso la luz no llega al fotoreceptor, se destruye a sí misma. Se da el valor 0 a toda sucesión de salientes (cuando la luz no llega al fotoreceptor) o no salientes (cuando la luz llega desfasada ½ período, que ha atravesado casi sin problemas al haz de luz que va en la otra dirección, y ha llegando al fotoreceptor), y damos el valor 1 al cambio entre saliente y no saliente, teniendo así una representación binaria. (Cambio de luz a no luz en el fotoreceptor 1, y luz continua o no luz continua 0.)





La luz reflejada se encamina mediante una serie de lentes y espejos a un fotodetector que recoge la cantidad de luz reflejada
La energía luminosa del fotodetector se convierte en energía eléctrica y mediante un simple umbral el detector decidirá si el punto señalado por el puntero se corresponde con un cero o un uno.




No hay comentarios:

Publicar un comentario